
I AO-A060 69? NAVAL AIR DEVELOPMENT CENTER WARMIN6?3R PA SWIUTARE -fTC ptS 9/g

SCREENING CRITERION FOR DELIVERED SOURCE IN MILITARY W~lTVARtI-?ClUl
NOV TO A J1 PARIUI

UNCLAUZPI91 MNO-M9134-0O-1 90.

Eu.....0

REPORT NO. NADC-79163-50(Z LVL

00
OVOLUME I

A SCREENING CRITERION FOR
DELIVERED SOURCE IN MILITARY SOFTWARE

Richard 3. Pariseau
Software and Computer Directorate

NAVAL AIR DEVELOPMENT CENTER

Warminster, Pennsylvania 18974

DTIC
14 November 1979 ELECTE

FEB 22 1980

TECHNICAL NOTE

AIRTASK No. ZF61412001

,m..

Work Unit No. GC333

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Prepared for
NAVAL AIR SYSTEMS COMMAND
Department the Navy
Washington, DC 20361

80 2 21 017

N O TI C E S

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development
Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar
year in which the number was assigned, the sequence number of the report within the specific calendar year, and
the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the
report. For example: Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared
by the Systems Directorate. The numerical codes are as follows:

CODE OFFICE OR DIRECTORATE

00 Commander, Naval Air Development Center
01 Technical Director, Naval Air Development Center
02 Comptroller
10 Directorate Command Projects
20 Systems Directorate
30 Sensors & Avionics Technology Directorate
40 Communication & Navigation Technology Directorate
50 Software Computer Directorate
50 Aircraft & Crew Systems Technology Directorate
70 Planning Assessment Resources
80 Engineering Support Group

PRODUCT ENDORSEMENT.- The discussion or instructions concerning commercial products herein do not constitute
an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY: 'DATE /'~-

r;- 7

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ften Does Zater___

REPORT DOCUMENTATION PAGE DRE MUCTINoRBEFORE COMPLETIG FORM

AT 2. GOVT ACCESSION NO. 3. RECIPIENT"S CATALOG NUMBER

5.EZ 0~EO REPORT a PERIOD COVERED

.,,,a:+o.=.-+,Vo,,. I-tA screening Criterion for Delivered Source inTehia

-. AUTWOR(e) 6. CONTRACT OR GRANT NUMBEIR(&)

Richard J./Pariseau

S. PERFORMING ORGANIZATION NAME ANO AOORES!, 10. PROGRAM ELEMENT. PROJECT. TASK

Naval Air Development Center AREA A WORK UNOT NUMRS

Software and Computer Directorate AIRTASK NO. ZF61412001
Warminster, PA 18974 Work Unit No. G.C333

II. CONTROLLING OFFICE NAME ANO ADDRESS I. REPORT DATE

Naval Air Systems Comand
Department of the Navy 1S. NUMBER OF PAGES

Washington, DC 20361 - 26
14. r.NITORING AGENCY NAME & AOORESS(If diflerent bern Contmilnd 0fle) I. SECURITY CLASS. (of tbs r pe"t)

. 7!)L IS&. OECLAS31FICATION/OOWNGRADING
rj1)2SCHEDULE

IS. DISTRIBUTION STATEMENT (of tlle Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. I +

17. DISTRIBUTION STATEMENT (of the abstract meared In Block 20, it diffelnt ber Report)

Is. SUPPLEMENTARY NOTES

Volume II; Appendices A, B, C, D, E, F, G, H.

1g. KEY WORDS (Contine on reowoer oide If neeeaedy Wd Irnltil? b7 boCk nmr)

Software Reliability
Investigation
Repair
Improvement

0 TRACT (Cantirna an reowae side It ne9Ceeein end identf&~ by block number)

goal of this study is to identify measurable characteristics of the
program source code that indicate the likelihood of future changes to the
program modules. These changes include both repair of software errors and
improvement in software performance.

Source code data and module change data were analyzed to correlate the
source code characteristics with the number of changes made to the modules.

(Continued °i reve.'I . '

DO I J,AN7 1473 EITION OP I NOV II is onsoLET.r UNCLASSIFIED
S/N 0102- LF. 014- 6601 SI'RITY CLASSIICATION OF THIS PAGE (Wh n Data BIre) +],

- .- - • .*.-. . * a .

UNCLSSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WIWW DGa. RM

The following conclusions were reached: (1) a pair of source code parameters
(size/structure) in a linear relationship is a useful predictor of the number
of changes, (2) a single parameter is not sufficient as a predictor of
fugure change and, (3) multiple parameters and nonlinear relationships do not
significantly improve the prediction over the two parameter linear case._

The results can be made an acceptance criterion for delivered source
modules prior to module testing. This application would support present Navy
efforts to improve software reliability and maintainability through engineer-
ing techniques applied as early as possible in the software development
process.

S/N 0102- LF. 014- 6601 UNCIASSIFIED

SECURITY CLASSIFICATION OF THIS PAGrI[MWW Dnes Rnt... g

-- ,.~ .5 -

NADC-79163-50

VOLUME I

For information and discussion.
The opinions expressed do not necessarily

represent the views of the Naval Air Development Center.

ACCESSION for
KTis White Section
DOC Buff Section "

UNANNOUNCCD 0
JUST ITICATION

By
DISTIUIIAYML~UIT O E

st. AVAIL and or 3P

i

- -- ,~.$-. -- -- -

NADC-79163-50

TABLE OF CONTENTS

Page

LIST OF TABLES .. 2

INTRODUCTION .. 3

GENERAL DISCUSSION .. 3

GOALS .. 3

BACKGROUNlD ... 3

SUMMARY OF APPROACH .. 4

DATA.. 6

COLL.ECTED DATA ... 7

ANAL.YZED DATA .. 7

ANALYSIS ... 12

DESCRIPTIVE STATISTICS ... 12

CORELTION COEFFICIENTS................................... 13

LIN.EAR RELATIONSHIPS ... 13

NOLIEA RELATIONSHIPS .. 14

RESULTS .. 15

DESCRIPTIVE STATISTICS ... 13

CORRELATION COEFFICIENTS #20

FUJNCTIONAL RELATIONSHIPS..................................... 21

CONCLUSIONS .. 23

RECOMMENDATIONS... 25

REFERENCES ... 27

APPENDICES (Separate Cover as Volume II)

A Sample Change Request

B Sample Change Request Data Sheet

C Raw DataI

D Descriptive Statistics for the Data

E Correlation Coefficients Between Data Items
and Measures of Change

F Results for the Two Parameter Linear Fit

G Results for the Multiparameter Linear Fit

H Results for the Nonlinear Fit

NADC-79163-50

LIST OF TABLES

Table Title Page

I Descriptive Statistics for an Average Module 16

II Means (M) and Standard Deviations (SD) for Selected
Data as a Function of Occurrences of Total
Changes .. 17

III Means (M) and Standard Deviations (SD) for Selected
Data as a Function of Occurrences of Known
Errors ... 18

IV Means (M) and Standard Deviations (SD) for Selected
Data as a Function of Occurrences of Possible
Errors 0........... 19

V Mean Values of Parameters for Regions of Change 20

V"I Correlation Coefficients Between Selected Data
Items and Measures of Change 21

VII Evaluation of Acceptance Criterion for Low
Change Areas o............ 22

VIII Coefficient Values for the Two Parameter Linear
F its 24

-2-

NADC-79163-50

INTRODUCTION

This report discusses an investigation into aspects of software reliability
that may be characterized by measurable properties of the program source code
(static analysis). Through examination of a large data base, size, structural,
and syntactic characteristics of software modules have been related to the
module histories of change. These relationships can be used as specification
criteria for module characteristics when contracting for software. Addition-
ally, they can be used to estimate maintenance requirements, to compare alter-
nate Implementations, to estimate changes to the software, and as input to
failure models in order to estimate software MTFB (Mean Time Between Failure).
These applications are practical in a FASP (Facility for Automated Software
Production) environment (reference (a)) because the program source code is
stored in a data base and th1e tools to automatically measure its size, struc-
tural, and syntactic characteristics fit naturally into the FASP concept.

GENERAL DISCUSSION

GOALS

The goal of this study was to determine a relationship between measurable
characteristics of the program source code and the number of changes that are
made to the program modules. This relationship would then be evaluated as-the
basis for a program module acceptance criterion.

BACKGROUND

Correct operation of military software is critical. The rapidly increas-
ing use of software in tactical systems and in major comunication systems has
resulted in initiatives by the DOD (Department of Defense) and the Navy to
improve the reliability of its software and to control the cost of achieving
that reliability (reference (b)). These initiatives include evaluation of
software quality at the earliest possible moment in the software development
cycle.

The cost of military software is high. DOD software costs are presently
in the three billion dollars per year range; new DOD software functions are
occurring at a rate of 67 percent per year (reference (c)). About 75 percent
of the coat occurs during the operation and maintenance phase of the system
life cycle (references (c), (d), and (e)). About 50 percent of the remainder
goes into the various developmental activities categorized as testing (refer-
ences (d), (f), (g), and (h)).

The use of testing to detect and repair software errors is time consuming
and expensive. In 1972, the United States Air Force spent over 750 million
dollars on various software testing activities (reference (d)). Additionally,
the relative cost of repair for software errors increases exponentially with
time into the software life cycle (reference Ci)). Therefore, large cost

-3

NADC-79163-50

leverage can be expected from any software technique that reduces the testing
or maintenance effort.

By using measurable characteristics of the program source code as a basis
for acceptance of the delivered program modules, poorly implemented software
can be rejected prior to the testing or maintenance phases. Because these
characteristics are measurable, the acceptance criterion can be specified as
a contractual requirement. This measurement would not identify errors, would
not guarantee the absence of errors, and would not eliminate the need for testing.
Rather, it would provide the ability to reject the program source code until it
meets a minimum standard for reliability.

SUMMARY OF APPROACH

The overall approach of this study has been to:

1. Identify measurable characteristics of the source program that are
related to software reliability.

2. Measure these characteristics for existing military software and collect
data for the corresponding history of change to the software.

3. Determine a relationship between the measurable characteristics and
the changes.

Identification of Measurable Characteristics. Measurements may be performed
upon the program source language in terms of its size, its structure, and its
syntax. Size properties categorize the amount of the program through counts
of fundamental elements. Examples are the number of source statements and
number of modules. Structural properties categorize program organization and
flow of control. Examples are program hierarchy, path information, and nesting
level. Syntactic properties categorize the source language and its use in the
program. Examples are statement types, use of terminal symbols, and use of
operands. McCabe has proposed a new structural measure (reference (j)).
Halstead has proposed measures that can be classified as either size or
syntax (reference (k)).

The identification portion of the study began in 1974 with an attempt to
determine structural properties of modules that could be used as measures of
complexity. The properties examined were the number of nodes, arcs, paths,
and source statements present in each module. The study consisted of simu-
lating the process of error detection in a module as a function of exercising
paths through the module. Control structures and error histories for 44 pro-
cedures from the NTDS (Navy Tactical Data System) program were used as input
to the simulation. The results are reported in references (1) and (m)).

The general conclusion of this initial study was that the four structural
factors had potential use as measures of complexity, but that no single factor
stood out as being a major determinant. It was, therefore, decided to include

-4-

HADC-79163-50

syntax in the measurable properties and to determine if the program complexity
could be measured as a function of two or more parameters.

Data Collection. There are a number of problems in securing size, structure
syntax, and reliability data for large military software systems. One problem
is that these software systems require years to develop and are expected to
have a long operational life. Usage of the software is required to produce
reliability data, and these systems rarely exist as numerically significant
multiple copies operating simultaneously. It is, therefore, necessary to
accept the long term cost associated with establishing and maintaining a data
collection mechanism over both the development period and some portion of the
maintenance period.

A second problem is technological. Military software is presently devel-
oped on equipment configurations and under operating systems that lag commercial
practice by two to four generations. It is only very recently that environ-
ments such as FASP have been created. These environments allow application of
automatic tools to measure the software characteristics, maintain the results,
and control the software development/maintenance process. Over the DOD, this
capability is limited. Therefore, on present projects, data collection efforts
will be manual, clerical activities. This has cost and schedule impact which
project managers must accept.

There are constraints on public release of the data that effectively act
to limit its availability for studies. In those cases in which the collection
of data represents an expenditure of the contractor's resources, the information
may be proprietary. For certain military systems, the data may be classified
since it reflects on the reliability of those systems.

The homogeneity of the collected data is affected by the change in the
technological base during the interval of data collection. Over the software
life cycle or even over the development period, military software efforts
often have:

1. The target hardware change from a prototype system with one set of
capabilities to a production system with a different set of capabilities.

2. The implementation language pass through a number of revisions or
even be completely respecified.

3. The operating system environment for both development and integration
pass through radical changes.

4. The applied software engineering methodologies change due to either
selection of new contractors or changes in approach within a specific con-
tractor.*

These effects must be considered both in terms of the homogeneity of the
data being analyzed and the applicability of the results to a specific software
environment.

NADC-79163-50

Another factor affecting data homogeneity is the protean nature of the
source program. Over the life cycle of the software, the program constantly
changes due to the repair of failures and to program improvements. Measured
values of size, structure, and syntax will vary while the failure data is
collected. These changes are not necessarily minor and present a difficulty
in interpretation of the result.

The data collection portion of the study began in 1973 as part of an
experiment in the application of structured programming to military software.
This experiment consisted of applying various software engineering methodologies
(e.g., egoless programming teams, top down implementation, structured code) to
the development of a tactical display processing program for the CV-TSC (Carrier
Based Tactical Support Center) system software. The effort was typical of
military software developments in that the assembly language, the operating
system, the computer, and the display system were all prototypes. The final
software comprised three programs totaling 578 modules consisting of 70,434
words of instructions resulting from 126,755 lines of source. The results of
this experiment have been reported in reference (n)).

As part of the development methodology, detailed documentation at the
module level was required for all corrections or modifications. This documen-
tation began with approval of module design and has continued through implementa-
tion, testing and operation. The combination of availability of the source
program, detailed module information throughout the life cycle, and close
association with the work performed resulted in the selection of this software
system as the subject of the study. The raw data was collected and analyzed
in 1977.

Additional data collection efforts have been started. In 1975, a tool
was developed to measure the size, structural, and syntactic characteristics
of programs written in the Navy's CMS-2 language. The present version of this
tool, SPAR (Source Program Analyzer and Reporter), has been used to analyze
approximately 800,000 lines of source code from Navy tactical programs. It is
intended to use this information in concert with failure histories of those
programs to evaluate the initial conclusions of this study.

Analysis. The module source language has been measured in terms of software
complexity characteristics. The change and modification histories have been
analyzed in an attempt to categorize the nature of the change as "errors" or
"modifications." Descriptive statistics for the various quantities have been
calculated. Linear regression techniques have been used to determine relation-
ships between the measured source properties and the various values for change
in the software. The relationships have been evaluated.

DATA

Two steps were required to determine the specific values of the module
source parameters and the module change history that are used in this study.
The first involved collection of the program source images for the modules

-6-

NADC-79163-50

and collection of the documents that describe the changes to those modules
during development and operation. The second consisted of analyzing the
source images to determine the parameter values and analyzing the change docu-
ments to determine the category and quantity of change to the software modules.

COLLECTED DATA

The source program images and the corresponding change documentation were
collected for that portion of the CV-TSC system software consisting of the
tactical display processing program. Development of this software began in
June 1973. Integration of the tactical display processing program had been
completed in the system integration facility by September 1974. Initial
delivery as part of the CV-TSC system software occurred in December 1974.

The tactical display processing program comprises 340 modules consisting
of 35,018 words of instructions resulting from 75,692 lines of source. The
source images were collected in April 1977 from the CV-TSC system library
identified as: "Set J, 15 June 1977." These images were processed by various
translators and system routines and now exist as files in the NAVAI1RDEVCEN CCS
(Central Computer System).

A requirement of the development methodology was that detailed documenta-
tion at the module level be provided for all corrections or modifications to
approved design or code. These documents are called "change requests." They
are hand-written and provide various amounts of information concerning the
change. Appendix A is an example of a typical change request.

Approximately 800 change requests were available in April 1977. These
spanned 3! years from October 1973 to the end of March 1977. The last 2 4
years represented the period of operational usage and program maintenance. Only
a small number of these 800 change requests fail to involve a change in the
program source. The major problem in evaluating them lies in distinguishing
between changes to correct an error and modifications to improve the program.

ANALYZED DATA

This data resulted from examination of the change requests and analysis of
the source images of the tactical display processing program. The effort re-
quired to examine the change requests constrained the data to a portion of the
program. This portion consisted of all tactical display processing software
with the exception of those modules used to define the global data base and
those modules that comprised the special purpose executive.

All of the source image data collected in April 1977 were processed by
an analyzer that counted various size parameters and provided detailed data on
the use of the syntax. Review of the listings for those modules corresponding
to the examined change requests provided additional counts of structural para-
meters.

-7-

NADC-79163-50

The resulting data were condensed into the final set of size, structural,
and syntactic parameters and stored as a data base in the NAVAIRDEVCEN CCS.
The stored data consist of parameter values and change values for 272 modules
and 61 associated submodules comprising 16,915 words of instructions resulting
from 53,614 lines of source. There are a total of 462 changes.

Modules and Submodules. The program development methodology specified the
module to be the basic source unit building block for the program. A module
was defined as a program unit that was discrete and identifiable with respect
to assembly, combining with other units, and loading. Due to the development
methodology, modules usually performed a single, specific function (i.e., had
functional strength).

There were cases in which a parent module called various subordinate
modules to perform related functions on a conmon data structure. In order to
hide the data structure, the subordinate modules were physically located within
the source image of the parent module, (i.e., the modules had informational
strength). In these cases, the subordinate modules were termed "submodules."
Although only modules existed as identifiable entities to the operating system,
the submodules were treated as distinct and identifiable units with regard to
the methodology of the development cycle.

For the purposes of this study, modules and submodules are treated identi-
cally. In the rest of this report, the term '"module" will mean "module or
submodule" unless specifically noted otherwise.

Change Request Data. Each change request was examined to determine which modules

were affected. For each module, six items of information were recorded:

1. Change request identifying number.

2. Date of change request.

3. Implementing engineer.

4. Approving engineer.

5. Primary area of change (design, code, unknown).

6. Primary reason for change (error, modification, unknown).

A sample data sheet can be found in appendix B.

If the change was known to be a change in code but not a change in design,
the area of change was designated as "code." If the change was known to be a
design change as well as a change in code, it was designated as "design."
Otherwise, the change area was designated as "unknown." This latter case
occurred in three instances.

If the reason for the change was a known error as indicated on the change
request or recalled by one of the engineers, it was designated as an "error."

-8-

• m n 11 I

NADC-79163-50

If the change was a known modification (in the sense of an "improvement" to
the original program) as indicated on the change request or recalled by one
of the engineers it was designated as a "modification." Otherwise, the reason
f or change was designated as "unknown."

From this information, the following values were calculated and stored
by module in a database in the CCS:

1. Total number of changes (Total Changes).

2. Total number of changes in design.

3. Total number of changes in code only.

4. Total number of unknown change areas.

5. Total number of known errors (Known Errors).

6. Total number of known modifications.

7. Total number of unknown reasons for change.

8. Possible Errors (Defined as: Total Changes - Known Modifications).

For the purposes of the study, Total Changes, Known Errors, and Possible

Errors were selected as the measures of change to the program modules.

Source Code Data. The source code data resulted from the output of a program
that counted size and syntactical parameters and from examination of the module
listings for counts of structural parameters. Thirty parameters were collected
for each module:

1. 'Number of cards.

2. Number of comment cards.

3. Number of processed cards.

4. Registers: Number of unique references.

5. Registers: Total number of references.

6. Op-Codes: Non-branching: Number of unique references.

7. Op-Codes: Non-branching: Total number of references.

8. Op-Codes: Branching: Number of unique references.

9. Op-Codes: Branching: Total number of references.

-9-

NADC-79163-50

10. Op-Codes: Directives: Number of unique references.

11. Op-Codes: Directives: Total number of references.

12. Op-Codes: Total number of unique references.

13. Op-Codes: Total number of references.

14. Variables: Local names: Number of unique references.

15. Variables: Local names: Total number of references.

16. Variables: Global names: Number of unique references.

17. Variables: Global names: Total number of references.

18. Variables: Numbers: Number of unique references.

19. Variables: Numbers: Total number of references.

20. Variables: Local expressions: Number of unique references.

21. Variables: Local expressions: Total number of references.

22. Variables: Global expressions. Number of unique references.

23. Variables: Global expressions: Total number of references.

24. Variables: Total number of unique references.

25. Variables: Total number of references.

26. Total number of ITE's (IF-THEN-ELSE's).

27. Total number of DOW's (DOWHILE's).

28. Total number of DOU's (DOUNTIL's).

29. McCabe Number.

30. Program Clarity.

Various parameters are described below. Actual values for each module can be
found in appendix C.

Card Counts (Items 1, 2, 3). The number of cards (item 1) includes all proces-
sed cards, all comment cards, all blank cards, and three cards related to job
control (header, assembler on, assembler off). A processed card (item 3) is
a source image containing an op-code or a directive. It is identical to the
total number of op-code references (item 13).

- 10 -

NADC-79163-50

Op-Code Counts (Items 6-13). Directives (items 10, 11) are assembler pseudo-
ops. The total references (items 12, 13) are the sums of nonbranching op-
codes (items 6, 7), branching op-codes (items 8, 9), and directives. The
total number of op-code references (item 13) is identical to the number of
processed cards.

Variable Counts (Items 14-25). Local names are variables defined internally
to the module; global names are defined externally. Global names include the
names of other modules when referenced.

Numbers have been counted as unique parameters when they were used as
literals or as the operand in an equivalence statement. They were not counted
when part of an expression defining addresses or constants.

Expressions in the operand field of the assembly statement result in
values that represent single, unique items, whether they be addresses or constants.
Therefore, expressions have been counted as single items and treated in the analy-
sis as if they were an alternate form of spelling for a variable.

The total number of references (items 24, 25) are the sums of local
variables, global variables, numbers, local expressions, and global expressions.

Structured Programming Constructs (Items 26, 27, 28). These are counts of the
occurrences in the modules of the standard structured programming constructs.

McCabe's Number (Item 29). This is the cyclomatic complexity, V(G), proposed
by McCabe in reference Q). It is a structural measure that may be viewed as
the number of independent paths in the module. For a module with a directed
graph, G, containing n vertices, e edges, and p connected components, it is
defined as:

V(G) - e - n + p

McCabe shows that for structured programs the cyclomatic number is equal
to one more than the number of predicates (i.e., decision points); therefore,
this item was equal to the sum:

ITE (item 26) + DOW (item 27) + DOU (item 28) + 1

Program Clarity (Item 30). Halstead, in reference (k), suggests a number of
measures that could be viewed as size or syntactic parameters. His suggested
parameter, E, defined as "the total number of elementary mental discriminations
required to generate a given program" was chosen as a possible measure of module
clarity. It was calculated from the approximation:

E - [(NI + N2) 1og2 (nl + n2)) nlN2
2n 2

- 11 -

NADC-79163-50

where: Ni Total Operator References.

- Total number of op-codes referenced (item 13).

N2 - Total Operand References.

- Total number of register references (item 5) + total number of

variable references (item 25).

n- Number of Unique Operators.

-Total number of unique op-code references (item 12).

n- Number of Unique Operands.

- Total number of unique register references (Item 4) + total

number of unique variable references (item 24).

ANALYSIS

Analysis of the data consisted of calculating descriptive statistics for
the data, calculating correlation coefficients between data items, arnd deter-
mining linear and nonlinear relationships between the data parameters (measures
of size, syntax, and structure) and measures of changes to the software. The
primary goal of the analysis was to determine a functional relationship that
could be used to accept or reject source modules on the basis of predicted
change to the module.

Analysis was performed on the NAVAIRDEVCEN's CCS. This is a large-scale,
third generation commercial system consisting of two CDC (Control Data Corpora-
tion) 6600's and a CYBER 170/Model 175. Calculations were performed using the
statistical library supplied as part of the operating system (reference (o)).

DESCRIPTIVE STATISTICS

There are 38 data items. Thirty are parameter values measured from the
source image of the modules, and eight are counts of change to the modules as
evaluated from the change requests. From the eight counts of change, TC (Total
Changes), KE (Known Errors), and PE (Possible Errors) were selected as the
measures of change.

The sum, the mean, the variance, and the standard deviation over the 333
data samples were calculated for each of the 38 data items. For each measure
of change (TC, KE, and PE) the data items were grouped by value of that measure.
Then the sum, the mean, the variance, and the standard deviation were calculated
for each data item in each group.

The calculations were performed to provide a general understanding of the
data, to aid in selection of significant parameters for the linear and nonlinear

-12-

NADC-79163-50

fits, and as a check on steps in the linear regression calculations. The
results are listed in appendix D.

CORRELATION COEFFICIENTS

Correlation coefficients were calculated between each pair of the 38 data
items. The calculations were performed to aid in identifying significant para-
meters and to aid in reducing the parameter sets for the multiparameter linear
fits and the nonlinear fits. The correlation coefficients between the 38 data
items and the measures of change (TC, KE, and PE) are presented in appendix E.

LINEAR RELATIONSHIPS

Two groups of linear fits were calculated. The first group involved
selecting pairs of significant parameters from the set of 30 parameters and
using multiple regression analysis to fit the pairs to each of the three
measures of change (TC, KE, and PE). Two parameters were chosen to represent
size or syntax and two parameters were chosen to represent structure. The
four resulting size/structure pairs were:

1. Processed Source (PS))/McCabe Number (MN).

2. Processed Source (PS)/Total Branching Instructions (TBI).

3. Program Clarity (PC)/McCabe Number (MN).

4. Program Clarity (PC)/Total Branching Instructions (TBI).

The second group of linear fits involved using multiple regression analysis
to fit about two-thirds of the data parameters to each of the measures of change.
Elimination of parameters from the set to be fitted was subjective. Guidelines
generally followed were to eliminate:

1. Parameters that essentially duplicated each other.

2. Parameters that represented a significant component of another parameter.

3. Parameters that were highly correlated with a parameter already included.

Two Parameter Linear Fit. The goal was to find a fit of the form:

Ci a KISi + K2Gi + K3

where: C is a measure of change

S is a size/syntax parameter

G is a structure parameter

K's are constants.

-13 j

NADC-791L63-50

The fit was then used to predict values of change, and the predictions were
compared with the actual values in order to evaluate the linear function as an
acceptance/rejection criterion for the modules.

Appendix F contains the 12 sets of results. Each set includes the defining
function, a quantized scatter diagram of predicted values versus actual values,
and an evaluation of the prediction. The evaluation indicates the percent of
correct acceptance/rejection and the percent of incorrect acceptance/rejection
for various levels of rejection.

Multiparameter Linear Fit. The data parameters were fitted to the three measures
of change to achieve functions of the form:

m
j-lW KjiPij

where: The m values of P represent the set of selected data parameters as
described above.

Pis one of the size/syntax parameters (PS or PC).

Pis one of the structure parameters (MN or TBl).

The XC's are constants.

As the number of independent variables in the regression formula is increased,
the residual error for the predicted change value of the specific data set de-
creases. Thus, the resulting multiparameter function can be used to:

1. Indicate an upper bound to the quality that can be expected for a
linear fit.

2. Indicate how well the parameters S and G (two parameter linear fit)
represent the characteristics of the larger set of parameters.

Appendix G contains the 12 sets of results. Each set includes the defining
function, a quantized scatter diagram of predicted values versus actual values,
and an evaluation of the prediction. The evaluation indicates the percent of
correct acceptance/rejection and the percent of incorrect acceptance/rejection
for various levels of rejection.

NONLhINEAR RELATIONSHIPS

The goal was to determine if a nonlinear function would improve the pre-
diction of the measures of change. The functional form selected was:

a ..
Ci- S i Gi I Kj Pij

-14

NADC-79163-50

where: C is the measure of change.

S and G are the significant size or structure parameters as
described above.

The Pigs are the remaining data parameters selected as described
above and include the constant, "1."

The K's, a, and 8 are constants.

The values for a and 8 were determined through multiple regression analysis
on the data:

log10 (Ci + 1) - ctlog 10 S + Ologi0Gi + y

Appendix H contains the 12 sets of results. Each set includes the defining
function, a quantized scatter diagram of predicted values versus actual values,
and an evaluation of the prediction. The evaluation indicates the percent of
correct acceptance/rejection and the percent of incorrect acceptance/rejection
for various levels of rejection.

RESULTS

Results are discussed for the areas of descriptive statistics of the data,
correlation coefficients, and functional relationships resulting from the multiple
regression analysis. It should be emphasized that these results are based upon
data representing a unique software development environment (e.g., language,
support facilities, methodologies, personnel). Their general applicability
must be further considered in terms of the similarity of other software develop-
ment environments to the environment that has been studied.

DESCRIPTIVE STATISTICS

Appendix D contains four sets of descriptive statistics of the data. The
first set consists of the sum, mean, variance, and standard deviation of the
data items over all samples. In the second set, the data have been grouped
by value of the Total Change data item. The sum, mean, variance and standard
deviation of each data item in each group has been calculated. The third and
fourth sets have been processed similarly in terms of values of the Known Errors
and Possible Errors data items.

All Samples. Table I presents descriptive statistics for an average module.
These are rounded values taken from the complete set in appendix D. Table I
shows that the development methodology resulted in small, uncomplicated
modules that required little change. The main points of interest are:

1. An average module is small and heavily commented.

2. Decision branching is largely due to IF-TIEN-ELSES as opposed to
DOWHILES or DOUNTILS.

NADC-79163-50

3. Branching in the module is largely due to the two branches per
structured construct plus the single return to the calling module.

4. The mean value of McCabe's Number is low.

5. The mean value of Program Clarity is low.

6. The mean values for the measures of change are low.

TABLE I

Descriptive Statistics for an Average Module

Data Item Mean Standard Deviation

Processed Source Cards 51 48

Coumment Cards 105 97

Total Branching Instructions 11 12

McCabe Number 5.5 5.8

Program Clarity 42K 84K

IF-THEN-ELSES 4.0 5.4

DOWH4ILES 3.1. 0.3

DOUNTILS 0.4 0.8

Total Changes 1.4 2.1

Known Errors 0.7 1.4

Possible Errors 1.0 1.7

Grouped Samples. Tables II, III, and IV present the means and standard
deviations for selected data items grouped according to the number of
occurrences of Total Changes, Known Errors, and Possible Errors respectively.
The data items presented are those used in the two parameter linear fits
(Processed Source, Total Branching Instructions, McCabe Number, and Program
Clarity). The values have been rounded from the results in appendix D.

In general, the mean values of the grouped data increase nonlinearly
with measure of change. Specific points do not conform. For instance,* the
mean values at 6 Known Errors (2 samples) and the mean values at 6 and 7
Possible Errors (3 samples) are low compared with adjacent groups. However,
the overall results indicate that larger, more complicated modules will be
changed more frequently. At the same time, tables 11, 111, and IV indicate
that no single source code parameter is better than the others and that no
single measure of change is superior to the others.

-16-

- ~ ~ 3Z *

NADC-79163-50

I4 coe V1 e
14 0

cn

CI LA 1-1 LA Go I

* 4 -4'.4 Ln Ln

10 0.0

U' wl 00 co

w- r-. 0% Go * .(04 0 - .0

P44 WW

C0 4.4 -I

0

0 LA 00 0' C - ' 0 d I

Aj 4)o5n c

ccI % C .0 0% Id d
Ln~ -4 CA LA

LA CA CA *n 00 CAC4

4)

600
0 m

W4 41Wo41 U3 44 14 f*

0 -4

a
0 4 0 04

-17-

NADC-79163-50

4 04

000

0 4~ N N%

"0

u0 in 'T No r-, n

0n

0 0

(JO P% U, 0 % U 4 Un

w4. 0 0

1:~.. Q 4 c f

>
-

$4 0

E4 u V-4 -
>0n

00 ~ ~ ~ C QI %O 4 ,4 - * .w4

,~ td.4

41.
U, U,

000

0r4 0%~r 0 - -

00

NADC-79163-50

n 1 -4I -W

F- IA

oll

0~0 NN ('I lA C

410
u. I.

w wA

02
w1. 04 0' a,~'0 0 -.

0 w P-

0.4 02

%0 0 v
02 # t ~ t M 4 C~IA4

S. 44.N
0 -LM ~ CJ ~ * ~ '

w- "(#I0 0 Go, 0 a

10,

aa

to o
02$4 - 0 00

00

*019

NADC-79163-50

Another way of looking at these results is that they partition into
three regions which can be viewed as low, medium, and high measures of the
particular type of change (Total Changes, Known Errors, Possible Errors).
Table V presents these regions and the associated mean values for Processed
Source, Total Branching Instructions, McCabe Number, and Program Clarity of
the data within each region.

Table V indicates that for this software development environment it would
have been possible to use measurements of size/structure parameters as a basis
for accepting modules that would have low occurrences of change and rejecting
modules that would have high occurrences of change. It can also be seen from
table V that the results would be similar regardless of which measure of change
is selected.

TABLE V

Mean Values of Parameters for Regions of Change

Low Change Medium Change High Change

Total Changes (0, 1) (2-7) (8-15)

Processed Source 39 69 198

Total Branching Instructions 9 15 44

McCabe Number 4.4 6.8 21.7

Program Clarity 27K 55K 241K

Known Errors (0) (1-4) (5-11)

Processed Source 40 69 167

Total Branching Instructions 9 15 41

McCabe Number 4.4 6.9 18.1

Program Clarity 28K 55K 285K

Possible Errors (0, 1) (2-7) (8-15)

Processed Source 40 77 237

Total Branching Instructions 9 17 57

McCabe Number 4.4 7.7 28.4

Program Clarity 28K 67K 444K

CORRELATION COEFFICIENTS

Table VI presents the values of the correlation coefficients between
selected data items and the three measures of change (Total Changes, Known
Errors, Possible Errors). The table includes Processed Source, Total Branch-
ing Instructions, McCabe Number and Program Clarity. No single data item
correlates veil with any of the measures of change.

-20-

NADC-79163-50

TABLE VI

Correlation Coefficients Between Selected Data Items
and Measures of Change

Data Item Total Changes Known Errors Possible Errors

Processed Source Cards 0.53 0.51 0.55

Comments 0.49 0.49 0.54

Total Branching Instructions 0.48 0.49 0.55

McCabe Number 0.43 0.46 0.51

Program Clarity 0.46 0.51 0.52

IF-THEN-ELSES 0.44 0.47 0.51

DOWHILES 0.15 0.19 0.20

DOUNTILS 0.15 0.14 0.17

FUNCTIONAL RELATIONSHIPS

An evaluation of the various functional relationships as a source program
module acceptance criterion is presented in table VII. This data has been ex-
cerpted from the results in appendices F, G, and H. Data values have been
rounded.

The functional relationships resulting from the linear and nonlinear fits
have been used to predict the amount of change (Total Changes, Known Errors,
Possible Errors) for each module. The low/medium change boundary indicated by
the grouped statistics of table V has been used as the module acceptance/
rejection criterion. The results as predicted from the functional relation-
ships have been compared with the actual changes indicated by the data. The
evaluation in table VII is expressed as the percent of modules correctly
accepted/rejected and the percent of modules incorrectly accepted/rejected.

Table VII indicates that for this software development environment any of
the 36 developed equations could have been successfully used as a screening
criterion. Correct acceptance and rejection of source modules would have
occurred in approximately 70 percent of the cases. The remaining cases are
approximately split between incorrect acceptance and incorrect rejection of
the source modules.

Table VII also indicates that there is no significant improvement in
acceptance and rejection if a larger number of parameters (multiparameter

-21-

HADC-79163-. 50

41 r% 0 - 0 m w 0

Li N
004LA NNN 0

1.44

0 (11 ~ ' 4
004

00
N

4~

wl N4
-4-'

N.

44

N
000.

0n%co 00 0

LA4 N4 C4 7 N N 0
4.1

C4 C

0 L A - 4 ~' 7 4 a- 0 - 4

ccC

4

-
to'

-4w 4 ~ j.g -~

CA u 41 0 C A to O,
do Uj (~U 0. 0

U 0 0 0 cN 0 0 '.' 1 0 4. ." . 0 0414
"0 40j~ 0. CJ 0 A0 . U

0 0Qj 0 Q 0 0

W 141

-22-

NADC-79163-50

linear fit) or a more complicated relationship (nonlinear fit) are used.
This is significant in that it simplifies the practical problem of measuring
the source code by reducing the number of parameters that must be measured.

The coefficient values for the twelve equations resulting from the two
parameter linear fits are presented in table VIII. The coefficient values for
the multiparameter linear fits and the nonlinear fits can be found in appendices
G and H.

CONCLUSIONS

The goal of this study was to determine a functional relationship between
variouss parameters of the module source code and various measures of change to
the module. This relationship would be used as the basis of an acceptance
criterion for delivered source code. The results of tables II, III, IV, V,
and VI show that a single source code parameter does not provide sufficient
information for an acceptance criterion. The results of table VII show that
a linear equation in a size parameter and a structural parameter provides a
sufficient basis for a practical acceptance criterion.

Table VII indicates that a successful prediction is made by any of the
functional relationships in about 70 percent of the cases.. In about 15 percent
of the cases, the source code is incorrectly rejected. Incorrect rejection
represents a prediction of more changes to the module than would actually
result. The impl.ementor is required to recreate software modules that actually
would have had an acceptable number of errors/changes because they are evaluated
as "too complicated" by the screening criterion. They will be accepted when
they are simplified. Over the life cycle of the software system, this clari-
fication will have benefits as the software is modified to adapt to changing
requirements. The re-doing of the software is being performed in early devel-
opment when it costs the least.

In about 15 percent of the cases, the source code is incorrectly accepted.
Incorrect acceptance represents a prediction of fewer changes to the module
than will actually occur. These errors/changes to the module will have to
be detected during testing or operation. This is no worse than the situation
presently accepted in software development.

Incorrect acceptance is the least desired case since it involves changes
to the software during the testing, integration, or maintenance phases. The
lowest values of incorrect acceptance occur in table VII when the measure of
change is Known Errors. For these cases, incorrect acceptance of modules that
are to have less than one known error will occur about 10 percent of the time
regardless of which of the two parameter linear equations is selected. From
table VIII, the four equations are:

(1) iCE - 0.014 (PS) + 0.00042 (HN) - 0.072

(2) iCE - 0.011 (PS) + 0.015 (TB) -0.074

-23-

-. 4j-

NADC-79163-50

x -4

4.14IT e o ne V4-1 4 e

m C4J
('4 N

000

.04

m@ 0c 0 0 o 0 0en X Q

C:. U 0 co (n4 m' 7
ca 0

w %0 coIT%00
04 V4 0 y%% 4I

1., $4 00
0-

I-I~~F- U, U U , ,44) I I I0 0o 0 0 0
02 fa

x0
C '

-4~~~1 Go- . U 0 -

04

-C4
Up

UCJ U, 7 N 77'.77".

NADC-79163-50

(3) KE - 0.0000067 (PC) + 0.024 (MN) + 0.24

(4) KE - 0.0000052 (PC) + 0.026 (TB) + 0.14

where: KE is Known Errors.

PS is Processed Source.

MN is McCabe's Number.

PC is Program Clarity.

TB is Total Branching Instructions.

Choice of an equation should be made on the basis of the difficulty of
measuring a particular pair of parameters. For example, McCabe's Number is
easily measured for structured code. 'When the code is not structured, Total
Branching Instructions is easier to measure. As shown by table VII, it does
not matter which equation is selected.

Table VII also shows that there is little gain in extending the functional
relationships to many parameters or to more complicated functions. There is
small improvement in predicting ability between the two parameter linear fit
and the multiparameter and nonlinear fits. This is encouraging since the
simpler relationship is more practical both in terms of specifying software
contracts and in terms of application when implementing the software.

While the developed functional relationships are specific only for this
set of data, the results indicate that static analysis can produce a practical
screening criterion applicable at a very early point in the software develop-
ment process. It is to be expected that the coefficient values and screening
boundary will vary with such development environment characteristics as pro-
gramming language, 2erse~anel, support facility, and methodology. However, the
results of this study indicate that a simple relationship of size, structural,
and syntactic parameters can be developed as a practical screening criterion.
If this type of analysis were performed consistently over many software devel-
opments, a collection of relationships corresponding to the different environ-
ments would result. The software purchaser could then pick the criterion
corresponding to his development environment.* For the present, the developed
relationships can be applied to those environments similar to that of refer-
ence (n).

RECOMMENDATIONS

It is recommended that the results of this study be verified by expanding
the analysis to other software development environments. These environments
should reflect present DOD policy with regard to HOL's (high order languages)

4 -25-

NADC-79163-50

and modern software development methodologies. At the NAVAIRDEVCEN, this is
embodied in FASP. FASP has the following advantages for the purposes of this
analysis:

1. It is utilized by large software development and maintenance projects.
Large developments are necessary in order to generate sufficient data
for analysis. Large developments also represent the most valuable
point of application for the screening criterion.

2. Tools to measure the size, structure, and syntax of software modules
and to calculate the predicted change to those modules may be implemented
in FASP as preprocessors to the language translators. This assures that
measurement will be made each time a module is translated.

3. FASP Software Management Reports already track size and change at the
module level. Expansion of this tracking to include structure and syntax,
predicated change, and to differentiate between error correction and
module modification is feasible.

It is therefore recommended that measuring tools be implemented in FASP for
the following military computer languages:

COMPUTER HOL AL NAVAIRDEVCEN PROJECTS

AN/UYK-7 CMS-2Y ULTRA-32 CV-TSC, S-3A

AN/UYK-20 CMS-2M MACRO-20/14 CV-TSC, LAMPS
SPL/I(M)

AN/UYS-1 SPL/I SPL ASP, P-3C, LAMPS

It is also recommended that the FASP Software Management Reports be modi-
fied to allow tracking of module structure and syntax, tracking of predicted
change, and to allow user specification of change category (error correction
or module modification).

Following implementation of these changes, it is recommended that a three
year study be performed for those projects developing and/or maintaining software
in the above languages on FASP. It is expected that this study will result in a
family of screening criteria applicable to specific languages utilizing the FASP
software development environment.

It is further recommended that those projects at NAVAIRDEVCEN utilizing a
software development environment similar to the one of the present study be
required to:

1. Utilize the indicated screening criterion as an element of their soft-
ware module acceptance procedure.

2. Historically track both the measures of the modules and their changes.

This data shall be used to verify or improve the screening criterion.

- 26 -

....- 'A4

NADC-79163-50

REFERENCES

(a) Naval Air Development Center FASP (Facility for Automated Software
Production) Brochure, Nov 1977.

(b) Dennis W. Farrell, "Navy Airborne Weapon System Software Acquisition,"
Defense Systems Management Review, Vol. 1, No. 6.

(c) W.Myers, "The Need for Software Engineering," Computer, Feb 1978,
pp. 12-26.

(d) Glenford J. Myers, "Software Reliability, Principles and Practices,"
John Wiley and Sons, 1976.

(e) G. Schick and R. Wolverton, "An Analysis of Competing Software Reliability
Models," IEEE Transactions on Software Engineering, Vol. SE-4, No. 2,
Mar 1978, pp. 104-120.

(f) B.W. Boehm, "Software and Its Impact: A Quantitative Assessment,"

Datamation, May 1973.

(g) Honeywell, Incorporated, "Software Management Seminar" Brochure, Jan 1978.

(h) R. Wolverton, "The Cost of Developing Large-Scale Software," IEEE Trans-
actions on Computers, Vol. C-23, No. 6, Jun 1974, pp. 615-636.

(i) B. W. Boebm, "Software Requirements and Design Aids," in "Software
Reliability: Infotech State of the Art Report; 2: Invited Papers,"
Infotech International, 1977.

(j) T.J.McCabe, "A Complexity Measure," IEEE Transactions on Software Engineer-
ing, Vol. SE-2, No. 4, Dec 1976, pp. 308-320.

(k) Maurice H. Halstead, "Elements of Software Science," Elsevier North-
Holland, Inc. 1977.

(1) T.F.Green, G.T.Howard, R.J.Pariseau, N.F.Schneidewind, "Program Structures,
Complexity, and Error Characteristics," presented at the Symposium on
Computer Software Engineering, Polytechnic Institute of New York,
20-22 Apr 1976.

(m) G.T. Howard, M.Kirchgaessner, N.F.Schneidewind, Report No. NPS52SS76111,
"Software Error Detection: Models, Validation Tests, and Program Com-
plexity Measures," Naval Postgraduate School, No. 1976.

(n) R.J.Pariseau, Report No. NADC-76044-50, "Improved Software Productivity
for Military Computer Systems Through Structured Programing," Naval Air
Development Center, 12 Mar 1976.

(o) "Control Data 6000 Series Computer Systems Statistical Subroutines
Reference Manual," Publication No. 60135300, Control Data Corporation,
June 1966.

- 27 -

* - - -*j

*

DISTRIBUTION LIST

REPORT NO. NADC-79163-50

AIRTASK NO. ZF61412001
Work Unit No. CC333

No. of Copies

HAVAIRSYSCOM, AIR-950D 4
(2 for retention)
(2 for AIR-530)

DDC 12

. 4.

